

déc.-08



# AEAMESP 2008

## Barcelona Line 9 Driverless Test Track

## **Salient Facts**

## Dr Gerard Yelloz Siemens Transportation Systems

### **SIEMENS**



AEAMESF

σ

erroviária ecnolog



#### **Barcelona Line Plan project**





### L9 Turnkey system scope of work

### Siemens:

- ATC Trainguard MT CBTC
- Signaling (point machines, signals, track-circuit)
- OCC (ATS, SCADA)
- Technical rooms equipment (light, UPS, air conditioning and fire protection)
- OPM

### **Dimetronic:**

Westrace Solid State Interlockings

#### **Third Party:**

Wireless LAN (for video transmission): wayside

### The leasing of the Rolling Stock is a separate contract



#### Scope of work

- Preliminary and detailed design (projeto constructivo)
- Manufacturing
- Installation
- Test and commissioning
- Guarantee (own spare + repair + technical assistance in case of failure)



#### L2 Test track





#### **Test Track**

 GISA / TMB decided first to organize a test track of Line 9 vehicles on 4 stations of Line 2 that would be used at night during off-revenue service hours.

 Alstom's series 9000 trains are equipped with both the TBS100 and CBTC



L2 Project benefited from the Line 9 project:

Trains of driverless line 9 can be used on with driver line 2.



#### **Test Track Configuration**

- 1 ATS, automatic train supervision
- 2 Zone Controllers, trackside ATC moving block CBTC
- 49 Digisafe balises
- 1 WCC 2 radio cells, train to track and train to track continous bi directionnal communication
- IO WRE radio bases with antenneas
- 2 trains
- Wayside signalling is single direction, in this test configuration routes are not controlled by the CBTC
- PSDs are simulated via a separate computer



#### **Test Track Project Roll Out**

- Project started end of August 2007 ended Early March 2007
- Installation was made with 1 month <sup>1</sup>/<sub>2</sub>
- Testing hours: 00:30 and 04:30 hours
- Tests could only be performed 3 nights a week,
  3 effective hours a night (approx 100 usefull hours of tests)
- Train characterization was performed in 3 days,
  - 50 scenarii were recorded
  - 2 measurement campaigns were necessary
- In October trains were already moving in UTO
- 2 Trains have operated in UTO, demonstrating the viability of the architecture and the CBTC system
- Next Step is now the roll out of the system on Line 9 section 4 (CYQ4/08)



#### **Train Control**

#### • OBCU and CIU :on board ATC

- installed in the middle of the train
- CRE
  - installed in front and rear ends of the train( antennaes )
- fully redundant hot swappable configurations
- +/- 25 cm stopping accuracy





#### Line 9 System features

- Same Trainguard MT CBTC System as in New York, but several innovations implemented in Barcelona SW:
  - 2,4 Ghz ETSI DSSS radio
  - UTO functionalities + 4 Manual Driving Modes
  - Interface with 3rd party Solid State IXL
  - Serial Interface to PSDs



### Line 9 System features

#### МТО

| operation mode without driver, under the full ATP    |       |
|------------------------------------------------------|-------|
| protection                                           |       |
| ΑΤΟ                                                  |       |
| operation mode assisted                              |       |
| protection                                           |       |
| ΑΤΡΜ                                                 |       |
| operation mode manual                                |       |
| driver, under the full ATP                           |       |
| protection                                           |       |
| ATPR                                                 |       |
| operation mode at sight, but                         |       |
| max speed is supervised                              |       |
| BYPASS                                               |       |
| fully manual at sight<br>© Siemens Transportation Sy | stems |



déc.-08



#### Conclusion

#### Success factors:

- Rollout of a mature CBTC product:
- No problem with radio (proven technology) and interfacing with AWS
- Experienced team (seasoned engineers involved in previous CBTC projects)
  - Seamless cooperation between development team/Integration FAT team/on-site test team
- New Rolling Stock, easier adaptation
- Cooperative operator and partners



## Conclusion

### Lessons learned:

- Focus on testing method design in the early stage of the project.
- Get an extensive test track with ATS ,IXL,PSD,...for integrated test.
- Performances,Operation modes,response time,architecture were verified and tuned intensively.
- As built Train characterization parameters, stopping accuracy, train control algorithms were tuned and demonstrated.
- Strictly negotiate the modifications of the train traction parameters
- Early transfer to the operationsstaff as much as possible of technical know how on the system in order to accelerate adoption of the technology and new operating modes
- Long integrated test track with stations is recommended reducing risk and project implementation on the target line
   Siemens Transportation Systems