

METROFERR 2012

Soluções Inovadoras em Telecomunicações Metroferroviárias

Alcedir Goulart

ALCATEL-LUCENT REALIZING THE POTENTIAL OF A CONNECTED WORLD

FAST FACTS **BROADBAND EVERYWHERE** is speeding up life and business. It takes **NO TIME** to go from having a **NEW IDEA**, to **TOUCHING PEOPLE'S LIVES**. We must innovate – and **HELP OUR CUSTOMERS INNOVATE** – at the speed of ideas.

Ben Verwaayen Chief Executive Officer

- Headquarters: Paris, France
- Annual revenues: approx. €15.3 billion
- Employees: approx. 76,062
- More than 130 countries

- R&D budget: €2.4 billion
- Active patents held: 29,133
- Patents awarded in 2011: 2,655
- Nobel Prizes won: 7

AT THE SPEED OF IDEAS[™]

2

CUSTOMERS WE SERVE

SERVICE PROVIDERS

STRATEGIC INDUSTRIES

ENTERPRISES

A leader in mobile, fixed, IP and optics technologies, and a pioneer in applications and services, we offer complete solutions that help service providers and their customers realize the potential of a connected world.

We provide end-to-end turnkey communications integration that improve quality of life through better **energy** management, efficient **transportation** and improved **government** services.

We help our enterprise and government customers worldwide interconnect their networks, people, processes and knowledge to make money and save money.

Alcatel·Lucent

A Growing Customer Base

Alcatel · Lucent

AT THE SPEED OF IDEAS

Metros

s-Bahn Berlin – Germany

ATM Milano – Italy

•Metro de Malaga

Metro de Panama

 Metro de Shangai Metro de Shenzen

Mainline Raliways

ADIF – Spain

Trains Kazakstan

Bulgarian Railways

MAV (Hungary)

Trafikverket – Sweden

Jernbaneverket – Norway

 Transtelecom – Kazachstan REFER Telecom – Portugal

Metro of Stockhholm

• FGV – Valencia Spain

Amsys (Amsterdam Metro)

Swedish Transport Administration

Sweden's transportation agency is responsible for rail, road, maritime and air transportation systems.

Challenges	Solution	Benefits
 Complex network No support for new services End of life for older products Need to reduce OPEX 	 Upgrade to single rail communications system Converged IP/MPLS infrastructure All IP 10-gigabit national network Common management platform 	 Simplified network operation – single easy to use interface. Able to safely migrate all traffic from multiple legacy networks Carrier grade Ethernet exceeded ITU-T standards New revenue generating opportunities

AT THE SPEED OF IDEAS[™]

Alcatel Lucent

Paris Linha 1 – Paris Driverless

A RATP está modernizando a linha 1 do Metrô de Paris e para este projeto a ALCATEL-LUCENT implantou, em regime Turnkey, uma solução de comunicação banda larga entre terra e trem, sendo que as aplicações para esta rede banda larga são:

- Monitoramento em tempo real das câmeras de bordo do trem
- Aplicações multimídia a bordo do trem (TV, Propaganda)
- Telefonia sobre IP (para ser usado como backup da rede Tetra)

INDUSTRY MARKET TRENDS: SIX MAJOR DRIVERS WHERE IS DEMAND COMING FROM?

Reality with traditional transport networks today

- Multiple networks to serve different applications

- Operators have to maintain multiple networks in parallel
 - Duplicate hardware and physical infrastructure
 - Duplicate personnel and operation systems
 - High OPEX

Services

······Alcatel·Lucent

- Limited capability to support next generation application requirements

- Limitation in bandwidth and expensive to scale bandwidth needs WILL grow
- Limited flexibility for adapting to different network topology requirements
- TDM based network are statically configured and suited for low bandwidth, low delay applications
- Justification for continued or new line investment in traditional networks is weak
 - Obsolete hardware/software components building a medium/long term problem and cost
 - End user application moving towards IP/Ethernet based (e.g. IP based CCTV Camera)

One network for all services is the target for the future

AT THE SPEED OF IDEAS™

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Alcatel · Lucent

Applicable also to other legacy platforms – ATM, Frame relay, etc.

Network Optimization

Wireline

What are those trends leading to ?

- Today, an organisation has 2 choices to build an infrastructure to interconnect its stations :
 - Native Ethernet / IP
 - IP/MPLS

	Ethernet /IP	IP / MPLS	
High Availability	Convergence time around 5sec- 10+sec for L2 Traffic	<50ms failover	
Security	Not traffic isolation in the core	Traffic isolation (VPNs in the core	
Enhanced QoS	Yes	Yes (same as Ethernet enhanced with traffic engineering and Hierarchy)	
Multi-services networks	IP application only can be transported (or through complex tunneling)	Multiservice support. IP and non IP (TDM,), can be transported	
Standard technology	Can Use Ethernet, MW, SDH end to end in the backbone	Can Use Ethernet, MW, SDH end to end in the backbone	

Alcatel
 Lucent

A Brief look at requirements

	SDH	IP	IP/MPLS
Reliablity	Yes. Anticipated	Yes – Reactive	Yes - Fast ReRoute <50ms
Predictability	Yes	No	Yes - H-QoS; Traffic Engineering RSVP-TE
Traffic Isolation	Yes – containers	No	Yes - Point to Point, P2MP : L2, L3
Multiprotocol	Yes-but not optimized for IP and Mcast	No	Yes - IP, IP Mcast, Data (Vmware,), TDM
Flexibility	No	Yes	Yes - Based on OSPF / ISIS

Where does IP/MPLS play a role ?

- Stardard Technology by IETF
- IP/MPLS is a Multi Protocol transport technology.
- IP/MPLS allows transport of TDM, IP or Ethernet traffic
- IP/MPLS can be transported over Ethernet or a Layer 2 protocol (PPP, ...)

Traffic Differentiation Advanced H-QoS (Hierarchical QoS)

- Less overall bandwidth required
- Lower overall cost
- Priority and best-effort traffic are equally well-served
- Voice and video do not always consume all the reserved bandwidth
- Example :
- VPLS service with four forwarding classes
 - Reserve 2 Mb/s for voice and 2 Mb/s for ERP
 - Enforce 14 Mb/s PIR for overall service
 - Allow critical and best-effort traffic to burst up to 14 Mb/s if bandwidth is available
- Reserve 2Mbps for CBTC applications

CIR: Committed Information Rate PIR: Peak Information Rate

MPLS (Multiprotocol Label Switching)

- Label Swapping
 - Connection table maintains mappings
 - Exact match lookup
 - Input (port, label) determines:
 - Label operation
 - Output (port, label)
 - Same forwarding algorithm used in Frame Relay and ATM

Enhanced Reliability: Secondary LSPs

Standard LSP failover

- Failure signaled to ingress LSR
- Calculate & signal new LSP
- Reroute traffic to new LSP

Standby Secondary LSP

- Pre-established LSP
- Sub-second switch-over

Enhanced Reliability: Fast Reroute

- Ingress signals fast reroute during LSP setup
 - Each LSR computes a detour path (with same constraints)
 - Supports failover in <50 mSec

AT THE SPEED OF IDEAS™

COPYRIGHT ALCATEL-LUCENT ALL PIGHTS RESERVED 2010

Alcatel
 Lucent

Wireless

Wireless Networks – What next? Applications and bandwidth (dedicated networks) Narrowband Mission critical Wireless Network (GSM-R) High Criticality for Railway operations **Broadband Wireless Network** WiFi, Satellite, proprietary Lov High Bandwidth Requirements Low Alcatel Lucent AT THE SPEED OF IDEAS[™]

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED

Bandwidth Requirements

What is LTE?

- LTE: Long Term Evolution
- An evolution of existing cellular networks
 - GSM->GPRS->EDGE->UMTS->HSPA->LTE
 - Three Pillars: OFDM, MIMO, Flat IP
- Performance (20MHz)
 - Peak speed of 120 Mbps / user
 - Very low latency: ~ 25ms
- New applications, reduced cost
 - Video Conference Full-Duplex? ("See what I see")
 - Real-Time Video Streaming
 - File Transfer
 - Email
 - Web

Push-to-Talk, VoIP Telemetry Remote Access to databases Transactions on Automatic Database Geolocation Instant Messaging

······Alcatel·Lucent

Ground to Train Communications From a variety of (proprietary) solutions...

Ground to Train Communications ... to a unified standardised solution

LTE use cases for Railways Efficiency in operations (1)

Ground-to-train radio system rationalisation

From dedicated and specialised systems to a unique standard system

Today, validation of Alcatel-Lucent LTE solution by major Telcos Tomorrow, applicable to Strategic Networks such as Rail

World's largest service providers have chosen Alcatel-Lucent

AT THE SPEED OF IDEAS™

Alcatel · Lucent 🅢

ferroviári

Solutions for broadband ground to train communications

Projects in implementation and for the near future

Examples of Metros that are implementing or planning networks WiFi -

- For medium and long term projects
- Working with the Anatel and government agencies to enable dedicated LTE frequency

- Examples of Metros planning LTE networks

Alcatel Lucent

End-to-end solution overview

AT THE SPEED OF IDEAS[™]

AEAMESP

18^a Semana **Tecnologi** oferroviária

Dinamic Communications for Railways Video

WORLD CLASS EXECUTIVE BRIEFING CENTER SÃO PAULO, Brazil

Live state of the art demonstrations and applications supported by LTE

To schedule a visit, contact your Alcatel-Lucent Account Executive or andre.gomes@alcatel-lucent.com Alcatel·Lucent

Contato:

Alcedir.goulart@alcatel-lucent.com

Mais informações:

www.alcatel-lucent.com

Backup Slides

AT THE SPEED OF IDEAS[™]

Evolution Strategy

- D Tecnologia Metroferroviária
- When planning the future of the communication networks in Railways, a evidence appears :
- THE FUTURE WILL BE PACKET BASED NETWORKS
- The question should not be : "what is my next technology in the communication networks for railways ?" but rather "when and how can I migrate ?"
- There are however two different ways of evolving the network towards IP/MPLS because of the flexibility of the protocol :
 - Running IP/MPLS over SDH
 - Running SDH over IP/MPLS
- Of course there are multiple scenarios in between those.

······Alcatel·Lucent

SDH Infrastructure Migration Option 1 – Phase 1

Alcatel
 Lucent

AT THE SPEED OF IDEAS™

• Alcatel • Lucent 🥢

AT THE SPEED OF IDEAS[™]

