

RAMS and V&V Fundamentals for Railway Applications

Sara STEFANELLI s.stefanelli@zeta-lab.it

Antonio Scofano a.scofano@zeta-lab.it

Unione europea Fondo Europeo di Sviluppo Regionale

FOCAL POINTS

Unione europea

Fondo Europeo di Sviluppo Regionale

REPUBBLICA ITALIANA

1. Why **RAM**S and V&V activities?

Unione europea Fondo Europeo di Sviluppo Regionale

1. Why **RAM**S and V&V activities? Quality TOTALOSTS kailute costs Cost Prevention costs Minimum quality cost **Quality Level** Quality level for min. quality cost

Fondo Europeo di Sviluppo Regionale

1. Why **RAM**S and V&V activities?

Fondo Europeo di Sviluppo Regionale

Regione Toscana

Unione europea Fondo Europeo di Sviluppo Regionale

Regione Toscana

1. Why RAM<u>S and V&V activities</u>?

Unione europea Fondo Europeo di Sviluppo Regionale

Regione Toscana

Fondo Europeo di Sviluppo Regionale REPUBBLICA ITALIANA

2. What are **RAMS** and V&V activities?

Fondo Europeo di Sviluppo Regionale

Regione Toscana

Define the system and all its components parts.

Determine the failure rate of each particular components in the system. To get the overall system failure rate, add up all the component failure rate.

Fondo Europeo di Sviluppo Regionale

Bathtub Curve

Examples of Reliability requirements

5.6 Affidabilità

Le COLL di veicolo deve avere un valore di MTBF reale, misurato sul campo in condizioni di esercizio, di almeno 80.000 ore. Tali valori di MTBF saranno calcolati mediante il rapporto tra il numero delle ore totali di esercizio erlettuate dagli impianti/apparati installati su una flotta campione ed il numero di guasti riscontrati nel periodo.

Ai fini del calcolo dell'MTBF deve intendersi per guasto ogni guasto di *tipologia grave* o maggiore in conformità alla norma UNI 11565.

MTBF \geq 80.000 hours.

12 Requisiti affidabilistici

Con "riserva" si intende ogni malfunzionamento, avaria, guasto o inconveniente relativo all'equipaggiamento oggetto di fornitura per cui si determina il mancato svolgimento della funzione richiesta al sistema antincendio o interventi indebiti dell'antincendio o indisponibilità del sistema antincendio.

I valori di affidabilità (espressi in: riserve/10⁶ km) saranno definiti dal fornitore.

Il fornitore a seguito di analisi FMECA, FTA e quanto altro necessario deve specificare ed individuare in dettaglio tutti gli specifici eventi che possono generare "riserva".

Tutte le avarie e tutte cause di generazione di una riserva devono essere tracciate in diagnostica in modo specifico e puntuale.

PROGRAMMA OPERATIVO REGIONALE

CRESCITA e OCCUPAZIONE

Example of FMECA Example of FTA Loss of air supply to pantographs control equipment Foglio di lavoro GT2 di Microsoft Excel Q=6,901E-09 w=1,708E-10 Loss of air supply Loss of isolation to both function of pantographs pantograph control control equipment equipment GT27 **GT28** Q=2,477E-13 w=6,192E-15 Q=6,901E-09 w=1,708E-10 HOSE PIPE HOSE PIPE BALLCOCK no Brake system rupture rupture closing failure (U10 001) (U09 001) (U07 004) EV3 EV69 EV4 EV68 FR=1,39E-08 FR=3,48E-10 FR=1,1E-09 FR=0,0005 n=2 m=1 n=4 m=1 n=2 m=1 POR zetalob TECNAU **Regione Toscana**

Unione europea

Fondo Europeo di Sviluppo Regionale

REPUBBLICA ITALIANA

Examples of Mission Reliability requirements

The following reliability performances shall be reached:

SEC	[4	ALFA events/10e6.km]	
Brake & Pneumatic		< 0,34	
N.B.: being the result of multiple events, the "Mission Reliability"	' (ALFA) figure is	Cancellatord VE	hicle level"

The events to be considered as <u>Mission Failure</u> for the <u>SEC</u> are those that lead to a maximum speed reduction greater than 20%; at least (but not limited to these) the following events are to be evaluated by the Supplier :

- brake caliper stuck on one bogie or more;
- more than two Bogies Brake isolation;
- more than one car brake isolation;
- Complete loss of compressed air.

During the project phase it is also required to perform the FMECA to analyze failure modes causing both Safety and Mission Reliability issues. The following is the table to be adopted (when producing the FMECA) in ranking the effects over the Mission reliability (revenue service):

EFFECTS ON "MISSION"	RANKING
No effects on revenue service	Ν
Vehicle withdrawal and/or a service delay \geq 15 minutes.	Α

Fondo Europeo di Sviluppo Regionale

2.2 Availabilty Prediction

 $Availability = \frac{MTBF}{MTBF + MTTR}$

Example of Failure categories to define the Reliability and Availability performances:

- **Significant**: Each anomaly, fault or trouble causing a service delay $\ge x$ minutes
- <u>Major</u>: Each anomaly, fault or trouble causing a functional degradation and/ or a service delay ≤ x.

Minor: Any failure occurring on the System, that is not classified as significant or major, leading to a maintenance task, even if this failure has no impact on service

2.2 Availabilty Prediction

Examples of Availability requirements

4.2. Disponibilità

Il parametro è definito come il rapporto tra i minuti di servizio effettuati ed i minuti di servizio programmati.

 $Disponibilità = \frac{\min uti.di.servizio.effettuati}{\min uti.di.servizio.programmati}*100$

I minuti di servizio effettuati sono valutati in rapporto al numero di stazioni servite, allo scopo di considerare nella valutazione del parametro i periodi in cui il servizio offerto non è completo (non tutte le stazioni sono servite). In pratica, per ogni periodo di servizio non completo, il valore dei minuti di servizio effettuati sono calcolati come segue:

 $\min uti.di.servizio.effettuati = \min uti.di.servizio.non.completo \times \frac{numero.stazioni.servite}{numero.stazioni.totali}$

Il valore tal et indicato dalle Specifiche di contratto [2] per questo parametro è pari a 98,55%.

ECNAU

Design for Maintainability

Examples of Maintainability requirements [R-DMS-1779] The maximum corrective maintenance time (MCMT) and the maximum mean time to repair (Max MTTR) shall have the values given in: [R-DMS-1780] MTTR [hr] MCMT at 90th percentile [hr] 24 48

- [R-DMS-1781] The time specified in requirements Table 9.3.2-1 shall be considered to be the clock time.
- [R-DMS-1782] Any corrective maintenance action shall be performed with a maximum of 3 qualified maintenance technicians, using standard tools and/or special tools specific to the Dome and Main Structure design.
- [R-DMS-1783] The time to repair (TR) shall be considered as the elapsed time between the event of communicating the occurrence of a failure (e.g. reporting the occurrence in a software tracking system) and the event of communicating the restoration of the System (reporting the failure resolution in a software tracking system) and assuming that the spares and necessary manpower are readily available where applicable (no logistic delay and administrative delay time shall be considered).

Fondo Europeo di Sviluppo Regionale

Examples of LCC Requirements

SEC	MATPM [EUR/10e3 km]	MHRPM [EUR/10e3 km]			
Brake & Pneumatic (Vehicle level – 5 cars)	< 147,126 (Note)	< 21,205			
N.B.: the preventive maintenance costs are to be calculated over the whole Vehicle life (25 years) taking into consideration the actual numbers of basic operations to be performed – eg.: the "1 year" interval operation will be performed 24 times only (at the end of the 25 years the Vehicle will be definitely out of service). Note: the cost of brake pads is excluded.					

SEC	MATCM [EUR/10e3 km]	MHRCM [EUR/10e3 km]		
Brake & Pneumatic (Vehicle level – 5 cars)	< 15,5 (Note)	< 1,4		
N.B.: the corrective maintenance costs are to be calculated taking into account the supposed occurrence frequency (failure rate) of the SEC parts.				
Note: the cost of brake pads is e	excluded.			

Examples of LCC

Fondo Europeo di Sviluppo Regionale

Regione Toscana

REPUBBLICA ITALIANA

Risk = Severity x Frequency

SEVERITY	CONSEQUENCES TO PERSONS OR ENVIRONMENT	
Catastrophic	Fatalities and/or multiple injuries and/or major damage to the environment	
Critical	ical Single fatality and/or severe injury and/or significant damage to the environment	
Marginal	Minor injury and/or significant threat to the environment	
Insignificant	Possible minor injury	

Frequency of	Severity Levels of Hazardous Consequences								
occurrence	INSIGNIFICANT	MARGINAL	CRITICAL	CATASTROPHIC					
FREQUENT	Undesirable	Intolerable	Intolerable	Intolerable					
PROBABLE	Tolerable	Undesirable	Intolerable	Intolerable					
OCCASIONAL	Tolerable	Undesirable	Undesirable	Intolerable					
REMOTE	Negligible	Tolerable	Undesirable	Undesirable					
IMPROBABLE	Negligible	Negligible	Tolerable	Tolerable					
INCREDIBLE	Negligible	Negligible	Negligible	Negligible					

RISK EVALUATION	RISK REDUCTION/CONTROL	
INTOLERABLE	Shall be eliminated	
UNDESIRABLE	Shall only be accepted when risk reduction is impracticable and with agreement of Railway autority	
TOLERABLE	Acceptable with agreement of Railway autority	
NEGLIGIBLE	Accepted without any agreement	

SIL Requierements

Torelable Hazard Rate (THR) per hour and function	Safety integrity level
10 ⁻⁹ ≤ THR ≤ 10 ⁻⁸	4
10 ⁻⁸ ≤ THR ≤ 10 ⁻⁷	3
$10^{-7} \le \text{THR} \le 10^{-6}$	2
10 ⁻⁶ ≤ THR ≤ 10 ⁻⁵	1

Unione europea

Hazard Analysis

Project: AFTC Supplier: HISTACO					Issue Date: edite	e: 00 12/07/2017 d by:						
ID	Mission Phase	Hazard	Cause	Consequence	Frequency	Severity	Risk	Proposed Controls	Frequency	Severity	Risk	Note

ID	Identification Number for each Hazard		
Mission Phase	Operating phase in which the hazard could be occur		
Hazard	Description of hazard		
Cause	Description of cause		
Consequence	Description of consequence associated to each hazard (it's been considered the worst case for the environment)		
Frequency	Frequency of occurrence according to EN 50126		
Severity	Severity Levels of Hazardous Consequences according to EN50126		
Risk	The risk associated (as product between Frequency and Severity)		
Proposed Control	The control which is proposed as mitigation for risk calculated and associated to each hazard		
Frequency	Frequency of occurrence according to EN 50126 and associated to new proposed control		
Severity	Severity Levels of Hazardous Consequences according to EN50126 and associated to new proposed control		
Risk	The risk associated (as product between Frequency and Severity) and associated to new proposed control		
Remarks	Remarks if necessary.		

OOO

V&V Process

Reference Standards

- EN 50126-1: 2017 Railway applications The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS) Part 1: Generic RAMS Process
- EN 50126-2:2007 Railway applications The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS) Part 2: Guide to the application of EN 50126-1 for safety
- EN 50126-3:2006 Railway applications The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS) Part 3: Guide to the application of EN 50126-1 for Rolling Stock
- EN 50128:2011 Railway applications Communication, signalling and processing systems Software for railway control and protection systems
- EN 50129:2003 Railway applications Communication, signalling and processing systems Safety related electronic systems for signalling
- EN ISO 9001 Quality management systems Requirements (ISO 9001:2008)
- EN 50155:2002 Railway applications Electronic equipment used on rolling stock
- EN 50121:2007 Railway applications Electromagnetic compatibility
- EN 50124-1:2005 Railway applications Insulation coordination Part 1: Basic requirements Clearances and creepage distances for all electrical and electronic equipment
- EN 50125-1:2000 Railway applications Environmental conditions for equipment . Part 1: Equipment on board rolling stock
- EN 50153:2003 Railway applications Rolling stock Protection measures against electrical hazards
- EN 50159-1:2002 Railway applications Communication, signaling and processing systems Part 1: Safety-relevant communications in a closed transmission network

ondo Europeo di Sviluppo Regionale

Software architecture - EN 50128

Technique/Measure	SIL 0	SIL 1	SIL 2	SIL 3	SIL 4
Fully Defined Interface	HR	HR	HR	М	М
Modular Approach	HR	М	Μ	М	Μ
Design and Coding Std	HR	HR	HR	М	Μ
Verification a	and testi	ng - EN 🗄	50128		
Technique/Measure	SIL 0	SIL 1	SIL 2	SIL 3	SIL 4
Traceability	R	HR	HR	М	М
Functional/Black-box Testing	HR	HR	HR	Μ	М
Performance Testing	-	HR	HR	Μ	М
Functional and Black-box Testing	HR	HR	HR	Μ	М
Compliant with EN ISO 9001	М	М	Μ	Μ	М
Complianti with ISO/IEC 90003	R	R	R	R	R
Company Quality System	М	М	Μ	Μ	М
Software Configuration Management	М	М	Μ	Μ	М
Checklists	R	HR	HR	HR	HR
Data Recording Analysis	HR	HR	HR	Μ	Μ

Fondo Europeo di Sviluppo Regionale

41

Which documents ? Depends on Safety Integrity Level (SIL)

Unione europea Fondo Europeo di Sviluppo Regionale

SIL 4 system documents list

- Safety Plan 1.
- Verification and Validation Plan 2.
- 3. Verification and Validation Report
- System Functional Hazard Analysis 4.
- System Requirements Specification 5.
- System Architecture Specification 6.
- 7. Hazard Log
- **Functional Test Specification** 8.
- 9. Funzional Test Report
- 10. Requirements Traceability Matrix
- 11. SW Requirements Verification Report
- 12. SW Architecture Requirement and **Component Design Verification**
- 13. SW Source Code Verification Report
- 14. HW/SW Integration Test Specification
- 15. HW/SW Integration Test Report
- 16. SW Integration Test Specification
- 17. SW Integration Test Report
- 18. SW Verification and Validation Plan
- 19. SW Verification and Validation Report
- 20. SW Component Test Specification
- 21. SW Component Test Report

- 22. SW Static and Quality Analysis
- 23. SW Non regression Analysis
- 24. SW Validation Test Plan
- 25. SW Validation Test Report
- 26. Type Test Plan
- 27. Type Test Procedure
- 28. Type Test Report
- 29. Product RAM analysis
- 30. MTBHE Evaluation
- 31. Subsystems FMEA
- 32. Configuration Management Plan
- 33. Software Configuration Management Plan
- 34. Software Requirements Specification
- 35. Hardware Design Specification
- 36. Installation User and Maintenance Manual
- 37. Quality Plan
- 38. Software Quality Assurance Plan
- 39. System Safety Report
- 40. Generic Product Safety Case

Unione europea

42

Fondo Europeo di Sviluppo Regionale

REPUBBLICA ITALIANA

S	AFETY CASE
Pa	art 1 Definition of System
Par	rt 2 Quality Management Report
Part	t 3 Safety Management Report
Part	4 Technical Safety Report
Part 5	5 Related Safety Cases
Part 6	Conclusion

Regione Toscana

 $\mathbf{\Omega}$

SAFETY CASE

Part 1 Definition of System

Part 2 Quality Management Report

Part 3 Safety Management Report

Part 4 Technical Safety Report

- Introduction
- Assurance of correct operation
- Effects of faults
- · Operation with external influences
- · Safety-related application conditions
- Safey qualification tests

Part 5 Related Safety Cases

Part 6 Conclusion

REPUBBLICA ITALIANA

Conclusion: Safety Case

2014 POR CTEO PROGRAMMA OPERATIVO REGIONALE CRESCITA • OCCUPAZIONE

Unione europea Fondo Europeo di Sviluppo Regionale

Fondo Europeo di Sviluppo Regionale REPUBBLICA ITALIANA

